SPECIAL ORGANIC SEMINAR

Symmetry Breaking Routes to Natural and Unnatural Ladderanes

Professor Santanu Mukherjee

Department of Organic Chemistry Indian Institute of Science, Bangalore, INDIA

Breaking symmetry to generate asymmetry, commonly termed *desymmetrization*, is a remarkably powerful strategy for building molecular complexity. Successful implementation of this strategy holds the potential to forge multiple stereogenic centers in a single step. In fact, stereocenters can also be created away from the reaction site.

During the past few years, we have developed a number of organocatalytic enantioselective desymmetrization reactions including formal $C(sp^2)$ –H alkylation¹ and *de novo* construction of (hetero)arenes.² We subsequently applied these reactions to the enantioselective synthesis complex targets.

Naturally occurring ladderane phospholipids represent a class of targets, which provided us with the motivation to develop some of these enantioselective desymmetrization reactions. This talk will focus on the application of our desymmetrizing C(sp²)–H alkylation reaction to [3]- ladderanol,³ [5]-ladderanoic⁴ acid as well as their unnatural analogues in an effort to unravel their biosynthetic hypothesis. In addition, our recent work on the enantioselective synthesis of an unnatural benzo-analogue of [3]-ladderanol through the application of our newly developed alkoxy-directed dienamine catalysis⁵ will also be discussed.

References:

- 1. (a) Manna, M. S.; Mukherjee, S. *J. Am. Chem. Soc.* **2015**, *137*, 130. (b) Sarkar, R.; Mukherjee, S. *Org. Lett.* **2016**, *18*, 6160. (c) Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. *J. Am. Chem. Soc.* **2022**, *144*, 17399.
- 2. (a) Ghosh, B.; Harariya, M. S.; Mukherjee, S. *Angew. Chem. Int. Ed.* **2022**, *61*, e202204523. (b) Ghosh, B.; Balhara, R.; Jindal, G.; Mukherjee, S. *Angew. Chem. Int. Ed.* **2021**, *60*, 9086.
- 3. Ray, S.; Mondal, S.; Mukherjee, S. Angew. Chem. Int. Ed. 2022, 61, e202201584.
- 4. Ray, S.; Das, S.; Behera, D.; Biswas, P.; Tarafdar, P. K.; Mukherjee, S. *ChemRxiv*, **2025**, DOI: 10.26434/chemrxiv-2025-gmdmv
- 5. Ray, S.; Behera, D.; Harariya, M. S.; Das, S.; Tarafdar, P. K.; Mukherjee, S. J. Am. Chem. Soc. 2025, 147, 2523.

📰 Tuesday, July 22, 2025

<u>4:30 pm</u>

BRWN 4102