ORGANIC SEMINAR

Catalytic Asymmetric Reductive Coupling Reactions Highlighting a Cobalt-to-Zinc **Transmetalation**

Hayden Bishop

Graduate Student (Uyeda Group), Purdue University

Abstract: Transition-metal-catalyzed reductive coupling reactions are attractive methods in organic synthesis that offer a straightforward and atom economical approach for C-C bond formation. These methods often use reductants such as H2 or a H2 surrogate to form the final product. As an alternative to this hydrogenolysis pathway, we demonstrate a cobalt-to-zinc transmetalation to afford chiral zinc metallacycle products. These products serve as versatile functional handles which can undergo further carbon-carbon and carbon-hetero atom coupling reactions. Mechanistic studies suggest that the key transmetalation step occurs between a Co(II) species and ZnCl2 . Additionally, a third π component has been introduced to the reductive coupling reaction to afford chiral β2,3–amino acid derivatives.

Tuesday, January 28th, 2025

4:30 pm 👤 WTHR 104