## ORGANIC SEMINAR

## **Biocatalytic Peptide Macrocyclization**

## **Zachary Budimir**

Graduate Student Parkinson Group Purdue University



Macrocyclic peptides are promising scaffolds for chemical tools and potential therapeutics. However, synthetic methods for peptide macrocyclization often face challenges such as C-terminal epimerization and oligomerization, which hinder scalability.

In this talk, I will present the characterization of Ulm16 and PBP-TE<sub>1</sub>, peptide cyclase enzymes from the penicillin-binding protein-type class of thioesterases (PBP-TE), which catalyze the head-to-tail macrolactamization of nonribosomal peptides. Both Ulm16 and PBP-TE1 exhibit unprecedented substrate promiscuity, with Ulm16 efficiently catalyzing the cyclization of various nonnative peptides ranging from 4 to 6 amino acids, achieving catalytic efficiencies of up to  $3 \times 10^6 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ . PBP-TE<sub>1</sub>, identified through bioinformatics, demonstrates the unique ability to cyclize tetrapeptides that no other reported PBP-TE can and a substrate scope well beyond that of Ulm16. Additionally, I will discuss the discovery and validation of a thioesterase domain capable of forming an indolamide bond during macrocyclization.



🛗 Tuesday, September 17, 2024 🛝 4:30 pm 🙎 WTHR 104





