PHYSICAL CHEMISTRY SEMINAR

Wednesday, March 20, 2024 10:30-11:30 a.m. BRWN 4102

"Nanoimaging the Electronic States and Phonon Dynamics of Heterogeneous 2D Materials"

Sarah B. King

Assistant Professor, Department of Chemistry
James Franck Institute
Neuroscience Institute
University of Chicago

Abstract:

Heterogeneity plays a critical role in chemistry, from the role of defect states in the carrier dynamics of organic semiconductors to interfaces and surfaces in heterogenous catalysis. However, our ability to visualize nano-scale heterogeneity in materials - including ferroic domains and material edges - and their effect on electronic and phonon dynamics has been hampered by the simple challenge of our inability to meet the necessary nanometer and femtosecond timescales. In this talk I will discuss recent efforts by my group to determine the interplay of heterogeneity and morphology on the intrinsic optoelectronic and thermoelectric properties of materials. Using polarization-dependent photoemission electron microscopy (PD-PEEM) we have imaged the spatially dependent optical selection rules of black phosphorus, 1 distinguishing edge-specific modes, and antiferroelectric domains of β'-ln2Se3,2 with spatial resolution as good as 25 nm. Using ultrafast transmission electron microscopy, we've been able to determine how the bond anisotropy and structural morphology of few-layer black phosphorus impacts phonon dynamics.3 Ultimately my group seeks to identify ways to modify the impact of structural heterogeneity in materials and rationally design energy efficient inorganic and organic/inorganic hybrid interfaces on the nanoscale using morphology and molecular interfaces.

Department of Chemistry

- 1. Joshi, P. P., Li, R., Spellberg, J. L., Liang, L. & King, S. B. Nanoimaging of the Edge-Dependent Optical Polarization Anisotropy of Black Phosphorus. *Nano Lett* 22, 3180–3186 (2022).
- 2. Spellberg, J. L., Kodaimati, L., Joshi, P. P., Mirzajani, N., Liang, L. & King, S. B. Electronic structure orientation as a map of inplane antiferroelectricity in β'-In2Se3. ChemRxiv (2024) doi:10.26434/chemrxiv-2024-lmx75